
王征(教授),365英国上市官网在线客座教授,北京大學心理與認知科學學院,麥戈文腦科學研究所、北大-清華生命科學聯合中心研究員,博士生導師。1998 年本科畢業于大連理工大學,2003年在華中科技大學獲碩士學位,2008年在加拿大西安大略大學獲博士學位,2009-2011年在美國範德堡大學心理學系開展博士後研究,2011-2021年在中國科學院腦科學與智能技術卓越創新中心曆任研究員、資深研究員,兼任腦影像平台主管。2014年入選中國科學院技術支撐人才,2023年獲北京市科學技術進步二等獎(排名第一)。先後主持或承擔了中科院3.0T和9.4T磁共振成像系統、中科院先導科技專項、科技部重點研發計劃、基金委國家重大科研儀器設備研制、原創探索專項、上海市科技重大專項、廣東省重點領域研發計劃、美國國立衛生研究院R01等相關科研任務。近年來在Science等國際知名學術期刊上發表學術論文70餘篇,是國際醫學磁共振協會、國際神經科學學會、美國生物精神病學學會的長期會員,擔任多個國際學術期刊(Neuroscience Bulletin等)編委和審稿人,以及發改委、财政部、科技部、教育部、工信部、基金委等多個國家部委機構的評審專家。 過去10餘年來指導已畢業的研究生中,1人獲全國博士後創新計劃,2人獲上海市超級博士後計劃支持,4人獲國家獎學金,1人獲北京市普通高等學校優秀畢業生獎,1人獲中國科學院院長優秀獎,1人獲中國科學院大學優秀學生獎,1名外籍留學生先後獲得了中國科學院院長特别獎(2017)、中國科學院大學優秀國際學生稱号(2019)等等。
研究方向
王征實驗室重點關注融合磁共振影像學、認知決策計算、行為學、轉錄組學及神經調控技術,探索精神疾病的量化診斷與個體化幹預。研究特色在于構建非人靈長類疾病模型,解析臨床情感認知障礙類疾病的環路機制,研創神經調控新技術開展認知幹預治療,開辟靈長類動物模型向臨床轉化應用的新途徑,推進精神疾病的客觀診療。主要研究方向包括:
1.開展超高場靈長類磁共振成像與轉錄組學大數據研究,運用人工智能方法深度挖掘腦聯接圖譜的生物學基礎;
2.重點解析強迫症、物質成瘾等情感認知障礙類疾病的環路機制,建立影像學指标評估優化認知行為、藥物以及深部腦刺激等治療方案的臨床療效;
3. 利用基因編輯等多種技術手段建立靈長類動物疾病模型,同時并行開展臨床研究(包括轉錄組學、行為學、影像學和神經調控幹預),探索模式動物-人類臨床試驗相互的轉化路徑,發展跨物種智能算法輔助的精準診斷和治療。
招生需求:
招收計算機圖像、自動控制、生物醫學工程、數學、物理、認知心理、神經科學等專業背景的博士生1人。
聯系方式:110247@hainanu.edu.cn
代表性論著
ØMapping brain connectomics in nonhuman primates offers a cutting-edge path to advance our understanding of neural networks, especially as we aim to translate these insights into human brain health applications. By integrating multi-modal approaches—such as MRI/PET imaging, genetic and transcriptomic profiling, behavioral analysis, and computational modeling—this line of our research has the potential to unveil intricate connections and functions within the brain that correlate with behavior, genetic traits, and disease vulnerabilities:
1) Zhang Z1, Huang YC1, Chen XY, Li JH, Yang Y, Lv LB, Wang JH, Wang MY*, Wang YW*, Wang Z*, State-specific regulation of electrical stimulation in the intralaminar thalamus of macaque monkeys: network and transcriptional insights into arousal, Advanced Science, 2024, 11(33): e2402718.
2) Wang W1, Bo TT1, Zhang G1, Li J, Ma JJ, Ma LX, Hu GL, Tong HG, Lv Q, Daniel JA, Luo D, Chen YJ, Wang MY, Wang Z*, Wang G.-Z.*, Noncoding transcripts are linked to brain resting-state activity in non-human primates, Cell Reports, 2023, 42: 112652.
3) Bo TT1, Li J1, Hu GL, Zhang G, Wang W, Lv Q, Zhao SL, Qin M, Yao XH, Wang MY*, Wang GZ*, Wang Z*., Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys, Nature Communications, 2023, 14:1499.
4) Yan MC1, Yu WW1, Lv Q, Lv QM, Bo TT, Chen XY, Liu YL, Zhan YF, Yan SY, Shen XY, Yang BF, Hu QM, Yu JL, Qiu ZL, Feng YJ, Zhang XY, Wang H, Xu FQ, Wang Z*, Mapping brain-wide excitatory projectome of primate prefrontal cortex at submicron resolution and comparison with diffusion tractography, eLife, 2022, 11: e72534.
5) The PRIMatE Data and Resource Exchange (PRIME-DRE) Global Collaboration Workshop and Consortium, Toward next-generation primate neuroscience: a collaboration-based strategic plan for integrative neuroimaging, Neuron, 2022, 110: 1-5.
6) Zhan YF1, Wei JZ1, Liang J, Xu X, He R*, Robbins TW, Wang Z.*, Diagnostic classification for human autism and obsessive-compulsive disorder based on machine learning from a primate genetic model, American Journal of Psychiatry, 2021, 178(1): 65-76. [Commentary by van den Heuvel OA, Can transgenic monkeys help us innovate transdiagnostic therapies? American Journal of Psychiatry, 2021, 178(1): 8-10. Kalin NH, Genes, cells, and neural circuits relevant to OCD and autism spectrum disorder, American Journal of Psychiatry, 2021, 178(1): 1-4]
7) Qin DD1, Zhou JK1, He XC1, Shen XY1, Li C, Chen HZ, Yan LZ, Hu ZF, Li X, Lv LB, Yao YG*, Wang Z.*, Huang XX*, Hu XT*, Zheng P*, Depletion of giant ANK2 in monkeys causes drastic brain volume loss, Cell Discovery, 2021, 7(1):113.
8) Lv QM, Yan MC, Shen XY, Wu J, Yu WW, Yan SY, Yang F, Zeljic K, Shi YQ, Zhou ZF, Lv LB, Hu XT, Menon R, Wang Z.*, Normative analysis of individual brain differences based on a population MRI-based atlas of cynomolgus macaques, Cerebral Cortex, 2021, 31(1): 341-355.
9) Cai DC1, Wang ZW1, Bo TT1, Yan SY1, Liu YL, Liu ZW, Zeljic K, Chen XY, Zhan YF, Xu X, Du YS, Wang YW, Cang J, Wang GZ, Zhang J, Sun Q, Qiu ZL, Ge SJ*, Ye Z, Wang Z.*, MECP2 duplication causes aberrant GABA pathways, circuits and behaviors in transgenic monkeys: neural mappings to patients with autism, Journal of Neuroscience, 2020, 40(19): 3799-3814.
10) Cui Y, Li X, Zeljic K, Shan S, Qiu Z*, Wang Z*, Effect of PEGylated magnetic PLGA-PEI nanoparticles on primary hippocampal neurons: reduced nano-neurotoxicity and enhanced transfection efficiency with magnetofection, ACS Applied Materials & Interfaces, 2019, 11(41): 38190-38204.
11) Zhou TT1, Zhu H1, Fan ZX, Wang F, Chen Y, Liang HX, Yang ZF, Zhang L, Lin LN, Zhan Y, Wang Z, Hu H*, History of winning remodels thalamo-PFC circuit to reinforce social dominance, Science, 2017, 357: 162-168.
12) Lv Q1, Yang LQ1, Li GL, Wang ZW, Shen ZM, Yu WW, Jiang QY, Hou BY, Pu J, Hu H*, Wang Z.*, Large-scale persistent network reconfiguration induced by ketamine in anesthetized macaques: relevance to mood disorders, Biological Psychiatry, 2016, 79: 765-775. [Commentary by Arnsten AF, Murray JD, Seo H, and Lee D. Ketamine’s antidepressant actions: potential mechanisms in the primate medial prefrontal circuits that represent aversive experience, Biological Psychiatry, 2016, 79: 713-715]
13) Wang Z1., Chen LM1, Negyessy L1, Friedman RM, Mishra A, Gore JC*, Roe AW*, The relationship of anatomical and functional connectivity to resting state connectivity in primate somatosensory cortex, Neuron, 2013, 78:1116-1126. [Previews by Olaf Sporns and Christopher J Honey, “Topographic dynamics in the resting brain”, 78, 955-956]
Ø Our research on human brain disorders began through a collaboration with clinical doctors in China, focusing on the therapeutic mechanisms of various neuroimaging and neuromodulation techniques, including deep brain stimulation. We aim to uncover the underlying effects of these techniques on patients and establish theoretical guidelines to improve treatment efficacy for individuals. Analyzing MRI data poses a unique challenge, prompting the development of new AI-derived computational models and algorithms to extract rich information on brain structure and function across diverse conditions.
1) Zhao SL1, Lv Q1, Zhang G, Zhang JT, Wang HQ, Zhang JM, Wang MY*, Wang Z*, Quantitative expression of latent disease factors in individuals associated with psychopathology dimensions and treatment response, Neuroscience Bulletin, 2024, advance online.
2) Yao JY, Li ZH, Zhou ZH, Bao AM, Wang Z*, Wei HJ*, He HJ*, Distinct regional vulnerability to Aβ and iron accumulation in postmortem AD brains, Alzheimer's & Dementia, 2024, 20(10): 6984-6997.
3) Lv Q*, Zeljic K, Zhao SL, Zhang JT, Zhang JM, Wang Z*, Dissecting psychiatric heterogeneity and comorbidity with core region-based machine learning, Neuroscience Bulletin, 2023, 39(8):1309-1326.
4) Lv Q1, Zhang M1, Jiang HF1, Liu YL, Zhao SL, Xu XM, Zhang WL, Chen TZ, Su H, Zhang JT, Wang HQ, Zhang JM, Feng YJ, Li YQ, Li B*, Zhao M*, Wang Z*, Metabolic and functional substrates of impulsive decision bias in abstinent heroin addicts after prolonged methadone maintenance treatment, NeuroImage, 2023, 283:120421.
5) Chen XY1, Wang Z1, Lv Q, Lv QM, van Wingen G, Fridgeirsson EA, Denys D, Voon V, Wang Z*, Common and differential connectivity profiles of deep brain stimulation and capsulotomy in refractory obsessive-compulsive disorder, Molecular Psychiatry, 2022, 27(2):1020-1030.
6) Li G, Huang P*, Cui SS, Tan YY, He YC, Shen X, Jiang QY, Huang P, He GY, Li BY, Li YX, Xu J, Wang Z*, Chen SD*, Mechanisms of motor symptom improvement by long-term Tai Chi training in Parkinson’s disease patients, Translational Neurodegeneration, 2022, 11: 6-16.
7) Feng L1, Yin DZ1, Wang XB, Xu YF, Xiang YS, Teng F, Pan YG, Zhang XL, Su JH, Wang Z*, Jin LJ*, Brain connectivity abnormalities and treatment-induced restorations in patients with cervical dystonia, European Journal of Neurology, 2021, 28(5):1537-1547.
8) Hong J1, Bo TT1, Xi LQ1, Xu XQ1, He NY1, Zhan YF, Li WY, Liang PW, Chen YF, Shi J, Yan FH, Gu WQ, Wang WQ, Liu RX, Wang JQ*, Wang Z*, Ning G, Reversal of functional brain connectivity associated with gut microbiome and gastrointestinal hormones after vertical sleeve gastrectomy in obese patients,Journal of Clinical Endocrinology & Metabolism, 2021, 106(9): e3619-e3633.
9) Zhang CC1, Kim S-G1, Li J, Zhang YY, Lv QM, Zeljic K, Gong HF, Zhan SK, Lin GZ, Sun BM*, Wang Z*, Voon V*., Anterior limb of the internal capsule tractography: relationship with capsulotomy outcomes in obsessive-compulsive disorder, Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92(6):637-644.
10) Lv Q1, Lv QM1, Yin DZ, Zhang CC, Sun BM, Voon V*, Wang Z*, Neuroanatomical substrates and predictors of response to capsulotomy in intractable obsessive-compulsive disorder, Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 28(5):1537-1547.
11) Wang ZW, Zeljic K, Jiang QY, Gu Y, Wang W, Wang Z*, Dynamic network communication in the human functional connectome predicts perceptual variability in visual illusion, Cerebral Cortex, 2018, 28(1):48-62.
12) Yin DZ1, Zhang CC1, Lv QM, Chen XY, Zeljic K, Gong HF, Jin HY, Wang Z.*, Sun BM*, Dissociable frontostriatal pathways: mechanism and predictor of the clinical efficacy of capsulotomy in obsessive-compulsive disorder, Biological Psychiatry, 2018, 84(12): 926-936. [Commentary by Hoexter MQ, Are we ready for individualized target planning of ablative procedures in intractable obsessive-compulsive disorder? Biological Psychiatry, 2018, 84(12): e85-e87]
13) Chen XY1, Zhang CC1, Li YX1, Lv Q, Zeljic K, Huang P, Jin HY, Chen SD, Sun BM*, Wang Z.*, Functional connectivity-based modelling simulates subject-specific network effects of focal brain stimulation, Neuroscience Bulletin, 2018, 34(6):921-938.
14) Lv QM1, Wang Z1, Zhang CC1, Fan Q, Zeljic K, Sun BM, Xiao ZP*, Wang Z.*, Divergent structural responses to pharmacological interventions in orbitofronto-striato-thalamic and premotor circuits in obsessive-compulsive disorder, eBioMedicine, 2017, 22:242-248.
15) Pan YX1, Wang LJ1, Wang ZW1, Xu C, Yu WW, Spillmann L, Gu Y*, Wang Z.*, Wang W*. Representations of illusory and real rotations in human MST– a cortical site for the Pinna illusion, Human Brain Mapping, 2016, 37: 2097-2113.
16) Yin DZ, Liu WJ, Zeljic K, Wang ZW, Lv Q, Fan MX, Cheng WH*, Wang Z*, Dissociable changes of frontal and parietal cortices in inherent functional flexibility across the human lifespan, Journal of Neuroscience, 2016, 36(39):10060-10074.
17) Pu J, Wang J, Yu WW, Shen ZM, Lv Q, Zeljic K, Zhang CC, Sun BM, Liu GX, Wang Z.*. Discriminative structured feature engineering for macroscale brain connectomes, IEEE Trans Med Imaging, 2015, 34(11):2333-2342.